ОБНАРУЖЕНИЕ МОШЕННИЧЕСТВА С КРЕДИТНЫМИ КАРТАМИ С ПОМОЩЬЮ МАШИННОГО ОБУЧЕНИЯ: ЭКСПЕРИМЕНТАЛЬНЫЙ ПОДХОД
Аннотация
Цель – предложить экспериментальный способ создания ML-решений проблемы обнаружения мошенничества с кредитными картами.
Метод или методология проведения работы: в статье использованы методы машинного обучения (ML) и интеллектуального анализа данных.
Результаты: в статье было показано, что методы машинного обучения (ML) и интеллектуального анализа данных эффективны в повышении точности обнаружения мошенничества. В исследовании предлагается экспериментальный способ создания ML-решений проблемы, направленных на минимизацию финансовых потерь путем мониторинга поведения клиента при использовании кредитных карт. Модель тестируется на общедоступном наборе данных, доступном для исследовательского сообщества с точки зрения точности обнаружения.
Область применения результатов: на практике полученные результаты целесообразно применять при планировании эффективных стратегий выявления мошенничества в кредитных картах.
Скачивания
Литература
References / Список литературы
Akter, M., Jakaite, L. Extraction of texture features from x-ray images: Case of osteoarthritis detection. In: X.S. Yang, S. Sherratt, N. Dey, A. Joshi (eds.) Third International Congress on Information and Communication Technology, 2019, pp. 143–150. Springer Singapore, Singapore. https://doi.org/10.1007/ 978-981-13-1165-9 13
Bhattacharyya, S., Jha, S., Tharakunnel, K., Westland, J.C. Data mining for credit card fraud: A comparative study. Decision Support Systems, 2011, vol. 50(3), pp. 602– 613. https://doi.org/10.1016/j.dss.2010.08.008.
Breiman, L. Random forests. Machine Learning, 2001, vol. 45(1), pp. 5–32. https://doi.org/10.1023/A:1010933404324
Breiman, L., Friedman, J., Olshen, R., Stone, C. Classification and RegressionTrees. Chapman and Hall, 1984.
Correa Bahnsen, A., Aouada, D., Stojanovic, A., Ottersten, B. Feature engineering strategies for credit card fraud detection. Expert Systems with Applications, 2016, vol. 51, pp. 134–142. https://doi.org/10.1016/j.eswa.2015.12.030
Dzakiyullah, N.R., Pramuntadi, A., Fauziyyah, A.K. Semi-supervised classification on credit card fraud detection using autoencoders. Journal of Applied Data Sciences, 2021, vol. 2(1), pp. 01–07.
Fiore, U., De Santis, A., Perla, F., Zanetti, P., Palmieri, F. Using generative adversarial networks for improving classification effectiveness in credit card fraud detection. Information Sciences, 2019, vol. 479, pp. 448–455.
Jakaite, L., Schetinin, V., Hladuvka, J., Minaev, S., Ambia, A., Krzanowski, W. Deep learning for early detection of pathological changes in x-ray bone microstructures: case of osteoarthritis. Scientific Reports, 2021, vol. 11. https://doi.org/10.1038/s41598-021-81786-4
Jakaite, L., Schetinin, V., Maple, C. Bayesian assessment of newborn brain maturity from two-channel sleep electroencephalograms. Computational and Mathematical Methods in Medicine, 2012, pp. 1–7. https://doi.org/10.1155/2012/ 629654
Jakaite, L., Schetinin, V., Maple, C., Schult, J. Bayesian decision trees for EEGassessment of newborn brain maturity. The 10th Annual Workshop on Computational Intelligence UKCI 2010. 2010. https://doi.org/10.1109/UKCI.2010.5625584
Jakaite, L., Schetinin, V., Schult, J. Feature extraction from electroencephalograms for Bayesian assessment of newborn brain maturity. 24th International Symposium on Computer-Based Medical Systems (CBMS), 2011, pp. 1–6. https://doi.org/10.1109/CBMS.2011.5999109
Jha, S., Westland, J.C. A descriptive study of credit card fraud pattern. GlobalBusiness Review, 2013, vol. 14(3), pp. 373–384. https://doi.org/10.1177/0972150913494713
Kaggle: Credit card fraud detection. https://www.kaggle.com/mlg-ulb/creditcardfraud
Lucas, Y., Portier, P.E., Laporte, L., He-Guelton, L., Caelen, O., Granitzer, M., Calabretto, S. Towards automated feature engineering for credit card fraud detection using multi-perspective hmms. Future Generation Computer Systems, 2020, vol. 102, pp. 393–402.
Nyah, N., Jakaite, L., Schetinin, V., Sant, P., Aggoun, A. Evolving polynomial neural networks for detecting abnormal patterns. 2016 IEEE 8th International Conference on Intelligent Systems (IS), 2016, pp. 74–80. https://doi.org/10. 1109/IS.2016.7737403
Nyah, N., Jakaite, L., Schetinin, V., Sant, P., Aggoun, A. Learning polynomial neural networks of a near-optimal connectivity for detecting abnormal patterns in biometric data. In: 2016 SAI Computing Conference (SAI), 2016, pp. 409–413. https://doi.org/10.1109/SAI.2016.7556014
Pourhabibi, T., Ong, K.L., Kam, B.H., Boo, Y.L. Fraud detection: A systematic literature review of graph-based anomaly detection approaches. Decision Support Systems, 2020, vol. 133, 113303. https://doi.org/10.1016/j.dss.2020.113303
Prusti, D., Rath, S.K. Fraudulent transaction detection in credit card by applying ensemble machine learning techniques. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), IEEE, 2019, pp. 1–6.
Schetinin, V., Jakaite, L. Extraction of features from sleep EEG for Bayesian Assessment of brain development. PLOS ONE, 2017, vol. 12(3), pp. 1–13. https://doi.org/10.1371/journal.pone.0174027
Schetinin, V., Jakaite, L., Krzanowski, W. Bayesian averaging over decision tree models: An application for estimating uncertainty in trauma severity scoring. International Journal of Medical Informatics, 2018, vol. 112, pp. 6-14. https://doi.org/10.1016/j.ijmedinf.2018.01.009
Schetinin, V., Jakaite, L., Krzanowski, W. Bayesian averaging over decision tree models for trauma severity scoring. Artificial Intelligence in Medicine, 2018, vol. 84, pp. 139–145. https://doi.org/10.1016/j.artmed.2017.12.003
Schetinin, V., Jakaite, L., Krzanowski, W. Bayesian learning of models for estimating uncertainty in alert systems: Application to air traffic conflict avoidance. Integrated Computer-Aided Engineering, 2018, vol. 26, pp. 1–17. https://doi.org/10.3233/ICA-180567
Schetinin, V., Jakaite, L., Krzanowski, W.J. Prediction of survival probabilities with Bayesian decision trees. Expert Systems with Applications, 2013, vol. 40(14), pp. 5466 – 5476. https://doi.org/10.1016/j.eswa.2013.04.009
Schetinin, V., Jakaite, L., Nyah, N., Novakovic, D., Krzanowski, W. Feature extraction with GMDH-type neural networks for EEG-based person identification. International Journal of Neural Systems, 2018. https://doi.org/10.1142/ S0129065717500642
Schetinin, V., Jakaite, L., Schult, J. Informativeness of sleep cycle features in bayesian assessment of newborn electroencephalographic maturation. 2011 24th International Symposium on Computer-Based Medical Systems (CBMS), 2011, pp. 1–6. https://doi.org/10.1109/CBMS.2011.5999111
UK Finance: Fraud the facts 2019. https://www.ukfinance.org.uk/ policy-and-guidance/reports-publications/fraud-facts-2019
Whitrow, C., Hand, D.J., Juszczak, P., Weston, D., Adams, N.M. Transaction aggregation as a strategy for credit card fraud detection. Data mining and knowledge discovery, 2009, vol. 18(1), pp. 30–55.
Просмотров аннотации: 318 Загрузок PDF: 179
Copyright (c) 2022 Courage Mabani, Andrey A. Tuskov, Elizaveta V. Shchanina
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.